Home » hum research

Category Archives: hum research

Two Important New Papers from Henrik

Henrik, one of our “scientists in residence” has written a long-awaited paper on tracking down external environmental noise using very basic tools. I will feature prominently on this blog and on the Hum Map website for the near future. I hope that this paper will not only help create a purer dataset for our project but will aid people who are suffering from nuisance, low-frequency noise that arises from classic anthropogenic sources.

The paper is written in two parts.

Read Part One here.

Read Part Two here.

A Simple and Crucial Experiment Awaits (Minneapolis Area)

This facility is apparently open for tourists. I would very much like a Hum hearer to go inside for a little while and tell me what they experienced.

What is Causing the Hum? The Four Hypotheses.

Some initial findings on Hum report concentrations

Looking at the Hum Map can be misleading, because heavy concentrations of Hum reports typically correlate with higher population densities. The regions of interest are where hum reports do not follow population density. One place in particular caught my eye: Vancouver Island, shown in the map below (for reference, Seattle and Vancouver are included in the screen shot).

Screen Shot 2016-02-06 at 9.56.23 AM

Vancouver Island is fairly big at over 31, 000 square kilometres (about 12, 000 square miles), but its population is only about 750, 000 people. This generates a per capita Hum report concentration of about 1 Hum report for every 17, 500 people.

Now contrast this with South Dakota:

Screen Shot 2016-02-06 at 10.06.15 AM

Four Hum reports among 875, 000 people. That’s a concentration of roughly 1 Hum report for every 210, 000 people. And along with North Dakota, parts of this region are home to one of the best optical fibre internet networks (http://dakotafire.net/article/broadband/). Internet penetration into home ranges from 73% to 80%, depending on the source you use. It could be even higher.

On a state by state or province by province basis and only on this quick and narrow examination, South Dakota has the lowest concentration of Hum reports. But that’s just an initial look at the Map. I expect others to do in-depth looks at the data, and to report more rigorous results.

Do contact me if you notice any Map points that look suspect or are obviously incorrectly geocoded.

Is the Hum on Wikileaks?

This is my second post on this topic.

I searched the entire Wikileaks database, using “low frequency sounds”, “sound complaints”, “naval communication”, “Taos”, “Kokomo”, “The Hum”, “unexplained sounds”, and on and on for at least an hour. Absolutely nothing.

Given the frankness of its contents and the acute governmental embarrassment caused by Wikileaks, I am nearly certain that governments do not know what causes the Hum, or that it is completely unimportant to them.

Let me know if you are aware of any official documentation on the topic.

Researchers: here are the raw database and KML files for you

I hope you find these useful. NOTE: the KML file is edited by me and drives the live and updated version of the Hum Map. The raw database file is unedited, and contains duplicate entries, spam, offensive writing, and oddball commentary.

Here is the KML: https://drive.google.com/file/d/0B9t3eeh6QDFGbnY5VllpLXZJRm8/view?usp=sharing

Here is the raw spreadsheet in Excel format: https://drive.google.com/file/d/0B9t3eeh6QDFGeW5GUmEzRWhNVEE/view?usp=sharing

Technical reference for possible interactions between solar activity and the Worldwide Hum

The original source is listed just below; I’ve pasted the abstract below that. This is not light reading; let me know if you need help translating this or if you are interested in full-text access.


  1. Effect of solar flares flux on the propagation and modal composition of VLF signal in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Nait Amor, Samir; Tribeche, Mouloud


    The VLF radio waves propagating in the Earth-Ionosphere waveguide are sensitive to the ionospheric disturbances due to X rays solar flux. In order to understand the VLF signal response to the solar flares, the LWPC code is used to simulate the signal perturbation parameters (amplitude and phase) at fixed solar zenith angle. In this work, we used the NRK-Algiers signal data and the study was done for different flares classes. The results show that the perturbed parameters increase with the increasing solar flares flux. This increases is due to the growth of the electron density resulting from the changes of the Wait’s parameters. However, the behavior of the perturbation parameters as function of distance shows different forms of signal perturbations. It was also observed that the null points move towards the transmitter location when the flare flux increases which is related to the modal composition of the propagating signal. Effectively, for a given mode, the plot of the attenuation coefficient as function of the flare flux shows a decreases when the flux increases which is more significant for high modes. Thus, the solar flares effect is to amplify the VLF signal by reducing the attenuation coefficient.